Exercise 6

Find the linear approximation of the function $g(x)=\sqrt[3]{1+x}$ at $a=0$ and use it to approximate the numbers $\sqrt[3]{0.95}$ and $\sqrt[3]{1.1}$. Illustrate by graphing g and the tangent line.

Solution

Start by finding the corresponding y-value to $x=0$.

$$
g(0)=\sqrt[3]{1+0}=1
$$

Then find the slope of the tangent line to the function at $x=0$ by computing $g^{\prime}(x)$,

$$
\begin{align*}
g^{\prime}(x) & =\frac{d}{d x} \sqrt[3]{1+x} \\
& =\frac{d}{d x}(1+x)^{1 / 3} \\
& =\frac{1}{3}(1+x)^{-2 / 3} \cdot \frac{d}{d x}(1+x) \\
& =\frac{1}{3(1+x)^{2 / 3}} \cdot(1) \tag{1}\\
& =\frac{1}{3(1+x)^{2 / 3}},
\end{align*}
$$

and plugging in $x=0$.

$$
g^{\prime}(0)=\frac{1}{3(1+0)^{2 / 3}}=\frac{1}{3}
$$

Now use the point-slope formula to obtain the equation of the line going through $(0,1)$ with slope $1 / 3$.

$$
\begin{gathered}
y-g(0)=g^{\prime}(0)(x-0) \\
y-1=\frac{1}{3} x \\
y=\frac{1}{3} x+1
\end{gathered}
$$

Therefore, the linearization of the function $g(x)$ at $a=0$ is

$$
L(x)=\frac{1}{3} x+1 .
$$

Compare the function and its linearization for $\sqrt[3]{0.95}=\sqrt[3]{1+(-0.05)}$.

$$
f(-0.05)=\sqrt[3]{0.95} \approx 0.983048 \quad L(-0.05)=\frac{1}{3}(-0.05)+1 \approx 0.983333
$$

Compare the function and its linearization for $\sqrt{1.1}=\sqrt{1+0.1}$.

$$
f(0.1)=\sqrt[3]{1.1} \approx 1.03228 \quad L(0.1)=\frac{1}{3}(0.1)+1=1.03333
$$

Below is a plot of the function and the linearization at $a=0$ versus x.

